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Abstract. Engle’s autoregressive conditional heteroskedasticity (ARCH) model and
its various generalizations have been widely used to model the volatility of economic
and financial time series. Most existing ARCH tests fail to exploit the one-sided nature
of the alternative hypothesis. Lee and King (A locally most mean powerful based score
test for ARCH and GARCH regression disturbances. J. Bus. Econ. Stat. 11 (1993), 17–
27) recently proposed a locally most mean powerful score-based one-sided test for
ARCH effects. In this paper a new one-sided test for ARCH effects of the disturbance
of a dynamic regression model is proposed. The test is based on a weighted sum of
sample autocorrelations of squared regression residuals, with the weighting function
typically giving more weight to lower orders of lags and less weight to higher orders of
lags. Lee and King’s (1993) test can be viewed as a special case of the present
approach with the use of uniform weighting. Many non-uniform weighting schemes
deliver better power than uniform weighting; the efficiency gain is substantial when a
relatively long lag is used. A simulation experiment confirms the gains from exploiting
the one-sided nature of the alternative hypothesis and from using non-uniform
weighting.

Keywords. ARCH; frequency domain analysis; one-sided testing for multiparameter
hypotheses; weighting.

1. INTRODUCTION

There has been considerable interest in estimating and testing dynamic
conditional heteroskedasticity of the regression disturbance since Engle (1982)
introduced the autoregressive conditional heteroskedasticity (ARCH) model. The
ARCH model and its various generalizations (e.g. Bollerslev’s (1986) generalized
ARCH or GARCH, Higgins and Bera’s (1992) nonlinear ARCH, Nelson’s (1991)
exponential GARCH, Sentana’s (1995) quadratic ARCH) have been widely used
to the model volatility of economic and financial time series. See Bera and
Higgins (1993) and Bollerslev et al. (1992, 1994) for recent surveys.

In this paper, we propose a one-sided test for ARCH effects. Detection of
ARCH effects is important. From the perspective of econometric inference, the
neglect of ARCH effects may lead to arbitrarily large loss in asymptotic
efficiency of parameter estimation (Engle, 1982); it also causes over-rejection
of conventional tests for serial correlation in mean such as those of Box and
Pierce (1970) and Ljung and Box (1978) (e.g. Taylor, 1984; Milhoj, 1985;
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Diebold, 1987). Weiss (1984) pointed out that ignoring ARCH effects will
result in overparameterization of an ARMA model. In practice, one is often
concerned with testing for the existence of ARCH effects and then proceeding
to investigate the model’s dynamic nature. For example, as pointed out by
Engle and Susmel (1993), it is necessary to test for the existence of ARCH
effects before testing and modeling volatility spillover across different time
series.

The most popular ARCH test is Engle’s (1982) Lagrange multiplier (LM) test
for ARCH(q). This test is simple to calculate and is asymptotically locally most
powerful, a characterization it shares with the likelihood ratio and Wald tests.
Lee (1991) showed that a modified LM test for GARCH( p, q) is the same as
the LM test for ARCH(q). The portmanteau tests of Box and Pierce (1970) and
Ljung and Box (1978) are also widely used (see also McLeod and Li, 1983).
These tests are asymptotically equivalent to the LM test (e.g. Granger and
Terasvirta, 1993, pp. 93–94). Other ARCH tests include those of Bera and
Higgins (1992), Gregory (1989), Hong and Shehadeh (1997), Lee (1991), Lee
and King (1993), Robinson (1991a) and Weiss (1986).

The one-sided nature of the ARCH alternative hypothesis has been known
for a long time. However, most existing tests fail to exploit this. A one-sided
test is expected to yield better power in small samples. Engle et al. (1985, p.
75) suggested a one-sided test for ARCH(1) by using the squared root of the
LM test with an appropriate sign. This approach, however, cannot be extended
to test higher-order ARCH(q) alternatives. Recognizing that the LM test fails to
exploit the one-sided nature of ARCH alternatives, Lee and King (1993)
proposed a one-sided locally most mean powerful score-based (LBS) test for
ARCH(q) and GARCH(q), by applying SenGupta and Vermeire’s (1986)
approach for testing one-sided multiparameter problems. The test is based on
the sum of the scores of the data evaluated under the null hypothesis. It is
essentially based on the sum of the first q sample autocorrelations of squared
ordinary least squares residuals. Lee and King (1993) showed in simulation that
this test has better power than the LM test in small samples, illustrating the
gain of exploiting the one-sided nature of the ARCH alternative. Sentana
(1995, p. 644) noted that Demos and Sentana, in a 1994 working paper, also
considered one-sided testing for GARCH effects by using an alternative
approach.

Lee and King’s LBS test gives equal weight for each of the q sample
autocorrelations. Because economic agents normally discount past information,
most ARCH processes have autocorrelations that decay to zero as the lag
increases. Indeed, the key feature of volatility clustering is that large volatility
changes tend to be followed by large volatility changes and periods of
tranquility alternate with periods of high volatility. This implies that the recent
past volatility has a larger impact on the current volatility than the distant past
volatility. Therefore, it seems to be more efficient to give more weight to lower
orders of lags and less weight to higher orders of lags. However, although Lee
and King showed that the LBS test for GARCH( p, q) was identical to the LBS
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test for ARCH(q), simulation (Lee and King, 1993) showed that the power of
the LBS test is hardly affected by changes in the coefficients associated with
lagged conditional variances. In fact, the LBS test has better power for highly
persistent GARCH(1, 1) if more lags (i.e. q . 1) are included in the test
statistic (see Section 5 below). This suggests that it may be desirable to let the
number of lags q grow with the sample size when testing persistent GARCH
processes and strongly dependent processes whose autocorrelations decay to
zero slowly (e.g. Robinson, 1991a; Baillie and Bollerslev, 1993; Baillie et al.
1993). The use of long lags is expected to have good power against persistent
or strongly dependent alternatives.

In this paper, we propose an ARCH test that exploits the one-sided nature of
the alternative hypothesis, permits flexible weights for sample autocorrelations,
and allows for the number of lags to grow with the sample size. We use a
frequency domain approach. It turns out that our test is based on a weighted
sum of sample autocorrelations of squared residuals, with the weighting
function typically giving more weight to lower orders of lags and less weight to
higher orders of lags. Under appropriate conditions, our test has a one-sided
asymptotic N (0, 1) distribution under the null hypothesis of no ARCH and
diverges to positive infinity as the sample size increases under the alternative.
The test is expected to have good power against strong-dependence alternatives.
Lee and King’s (1993) LBS test can be viewed as a special case of our
approach because it corresponds to the use of uniform weighting that gives
equal weight to each of the q sample autocorrelations. Non-uniform weighting
delivers better power than uniform weighting; the efficiency gain is substantial
for relatively large q. In addition, our approach leads to a natural choice of q
by such data-driven methods as those of Andrews (1991), Beltrão and
Bloomfield (1987) and Robinson (1991b). Simulation shows that these data-
driven methods deliver reasonable size and power.

Lee and King’s (1993) approach is discussed in Section 2. In Section 3, we
introduce our statistic and derive its asymptotic null distribution. In Section 4,
we obtain the asymptotic local power of our test and discuss the relative
efficiency of various weighting functions. Automatic choices of q via data-
driven methods are also discussed. In Section 5, a simulation experiment is
conducted to investigate the finite sample performances of our test in
comparison with Lee and King’s test (1993) and Engle’s (1982) LM test.
The last section concludes the paper. All mathematical proofs are collected in
the Appendix.

2. THE LBS TEST

Suppose fYtg is a stationary process such that

Yt � X 9tb0 � ε t t � 1, . . ., T (1)

with an ARCH error

ONE-SIDED TESTING FOR CONDITIONAL HETEROSKEDASTICITY 255

# Blackwell Publishers Ltd 1997



ε t � î t h
1=2
t :

Here, X t is a vector consisting of exogenous variables and lagged dependent
variables, b0 is a finite-dimensional parameter, î t is an identically and
independently distributed (i.i.d.) sequence with E(î t) � 0 and E(î2

t ) � 1, and
ht is a positive time-varying measurable function with respect to the information
set I tÿ1, available at period t ÿ 1.

By construction, fε t, I tg is a martingale difference sequence and ht �

E(ε2
t jI tÿ1) is the condition variance of ε t: A well-known functional form for ht

is Engle’s (1982) ARCH(q) process

ht � α0 �
Xq

j�1

α jε2
tÿ j

where q is a fixed integer. To ensure that ht is strictly positive for all realizations
of ε t, it is required that α0 . 0 and α j > 0 for j � 1, . . ., q.

Another popular functional form for ht is Bollerslev’s (1986) GARCH( p, q)
process

ht � α0 �
Xq

j�1

α jε2
tÿ j �

Xp

j�1

â j h
2
tÿ j:

To ensure that ht is strictly positive for all realizations of ε t, one normally
requires that α0 . 0, α j > 0, j � 1, . . ., q, and â j > 0, j � 1, . . ., p: Nelson and
Cao (1992) showed that these constraints may be weakened for processes of
higher order than GARCH(1, 1): See also Drost and Nijman (1993).

To test for ARCH(q), the hypotheses of interest are

H0: α j � 0 for j � 1, . . ., q

versus

HA: α j > 0, j � 1, . . ., q, with at least one strict inequality.

Engle’s (1982) LM test for ARCH(q) can be obtained as TR2, where R2 is the
squared multicorrelation coefficient of the regression

e2
t � α0 �

Xq

j�1

α je
2
tÿ j � v t

where e2
t is the ordinary least squares residual from (1). This statistic is

asymptotically ÷2
q under H0: However, it is a test for H0 against a two-sided

alternative.
Exploiting the one-sided nature of HA is expected to yield better power in

small samples. For q � 1, Engle et al. (1985) suggested that a one-sided test
for ARCH(1) can be obtained by using the squared root of the LM test with an
appropriate sign, but this approach cannot be extended to general cases for
q . 1.

SenGupta and Vermeire (1986) introduced a class of locally most mean
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powerful unbiased tests for multiparameter hypotheses. These tests maximize
the mean curvature of the power function in the neighborhood of the null
hypothesis. Lee and King (1993) applied this approach to construct a one-sided
test for H0: More specifically, Lee and King’s test is based on the sum of
scores evaluated under H0, namely,

ŝ �
Xq

j�1

@

@α j
LT (αje2)jα�0

where LT (αje2) is the log-likelihood function conditional on the sample
e2
� (e2

1, . . ., e2
T )9, and α � (α1, . . ., αq)9: Lee and King’s test statistic is a

proper standardized version of ŝ:

LBS(q) � ŝ=(l9^Jαα l)1=2

where l is the q 3 1 vector of ones, and ^Jÿ1
αα � =2

α LT (αje2)jα�0 is the sample
information matrix evaluated under H0: Under H0, LBS(q) is asymptotically
N(0, 1): For concreteness, Lee and King (1993) assumed that î t is N(0, 1): This
yields

LBS(q) � ^Vÿ1=2
X

t

e2
t

σ̂ 2
ÿ 1

� �
Xq

j�1

e2
tÿ j (2)

where ^σ 2
� Tÿ1

PT
t�1 e2

t and

^V � 2
X

t

Xq

i�1

e2
tÿi

 !2

ÿ

X

t

Xq

i�1

e2
tÿi

 !2�

(T ÿ q)

8

<

:

9

=

;
:

This test is not robust to non-normality. Lee and King also proposed a modified
version that is robust to non-normality, by using the variance estimator

^VT �

(T ÿ q)ÿ1
X

t

e2
t

σ̂ 2
ÿ 1

� �2
( )

X

t

Xq

i�1

e2
tÿi

 !2

ÿ

X

t

Xq

i�1

e2
tÿi

 !2�

(T ÿ q)

8

<

:

9

=

;
:

Furthermore, Lee and King (1993) showed that the LBS test against
GARCH( p, q) is identical to the LBS against ARCH(q), because the sum of
the scores evaluated under H0 is precisely the same as that for the LBS test
against ARCH(q). In their simulation, Lee and King (1993) showed that their
test has better power than Engle’s (1982) LM test. See also Section 5 below.

The LBS test (2) is essentially based on the sum of the first q sample
autocorrelations of the squared residual, where q is a fixed integer. Obviously,
the LBS test gives equal weight for each of the q sample autocorrelations. This
may not be fully efficient against the alternatives whose autocorrelations decay
to zero as the lag increases, which are often encountered in practice because
economic agents usually discount past information. Indeed, a stylized fact for
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the volatility clustering of most financial time series is that high volatility
‘today’ tends to be followed by a similar volatility ‘tomorrow’ and vice versa.
This implies that the recent past volatility has bigger impact on the current
volatility than the distant past volatility. For such alternatives, a more efficient
test may be obtained by giving more weight to lower orders of lags and less
weight to higher orders of lags. On the other hand, when the LBS test is
applied to test GARCH( p, q), only the first q sample autocorrelations are used,
no matter how strong the persistence of GARCH effects is. We expect that this
might not be optimal for testing highly persistent GARCH( p, q) and strongly
dependent processes, whose autocorrelations decay to zero slowly. Here, it is
better to include long lags. Below, we construct a one-sided test that uses non-
uniform weights and allows for q to grow with the sample size.

3. A NEW ONE-SIDED ARCH TEST

We consider the following data-generating process.

ASSUMPTION A1. The stochastic process fYtg is given by

Yt � g(X t, b0)� ε t ε t � î t h
1=2
t t � 1, . . ., T

where X t is a vector consisting of exogenous variables and lagged dependent
variables, b0 is a finite-dimensional parameter vector, and ht is a positive time-
varying measurable function with respect to the information set I tÿ1: The
innovation fî tg is an i.i.d. sequence with E(î t) � 0, E(î2

t ) � 1 and E(î8
t ) ,1:

Also, î t is independent of X s for all t > s.

ASSUMPTION A2. (a) For each b, g(·, b) is a measurable function with respect
to I tÿ1; (b) g(X t, :) is twice differentiable with respect to b in an open convex
neighborhood N (b0) of b0 almost surely, with

lim
T!1

E sup
b2N(b0)

Tÿ1
XT

t�1

i=b g(X t, b)i4

( )

,1

and

lim
T!1

E sup
b2N(b0)

Tÿ1
XT

t�1

i=2
b g(X t, b)i2

( )

,1,

where =b and =2
b are the gradient and Hessian operators respectively.

Note that we make no specific distribution (e.g. normality) assumptions on
the innovation fî tg beyond the regularity moment conditions. Our extension to
nonlinear regression models is straightforward, but it allows that the X t are
trending variables or nonstationary time series when g(·, ·) is an appropriate
nonlinear functional form.
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Suppose that ht follows a general linear process

ht � α0 �
X1

j�1

α jε2
tÿ j (3)

where, to ensure strict positiveness of ht, α0 . 0 and α j > 0 for all j � 1, . . .,
1 (cf. Nelson and Cao, 1992). This process includes Engle’s (1982) ARCH(q),
Bollerslev’s (1986) GARCH( p, q) and Engle and Bollerslev’s (1986) integrated
GARCH (IGARCH) and fractionally differenced GARCH processes. For
ARCH(q), α j � 0 for j . q; for stationary GARCH( p, q), the α j decay
exponentially; for fractionally differenced GARCH, the α j decay at a slow
geometric rate. We note that Robinson (1991a) considered (3) in constructing a
general class of LM tests that includes Engle’s (1982) and Weiss’s (1986) LM
tests for ARCH(q) and many new ones designed to have good power against long
memory processes. There, some parametric restrictions on the α j were imposed
because the LM principle was used.

Given (3), we consider the hypotheses of interest

H0: α j � 0 for all j � 1, 2, . . .

versus

HA: α j > 0 for all j � 1, 2, . . ., with at least one strict inequality.

Let f (ω) be the normalized spectral density of ε2
t , where ω 2 (ÿπ, π). Then,

for (3),

f (ω) �
1

2π
j1ÿ

X1

j�0

α j exp (ijω)jÿ2 ω 2 (ÿπ, π)

where i �
p

�ÿ1�. We observe that f (0) � 1=2π under H0 and f (0) . 1=2π
under HA. This observation forms the basis for our test, namely, a one-sided test
can be obtained by comparing an estimator of f (0) to 1=2π. If an estimate of
f (0) is close to 1=2π, then there is no ARCH; when ARCH effects exist, the
estimate will be significantly larger than 1=2π asymptotically, thus delivering a
one-sided test for H0. In addition, a test based on an estimator of f (0) is
expected to be particularly powerful against strong-dependence alternatives,
because their spectral densities are positive infinity at frequency zero (cf.
Robinson, 1991a, 1994). Hence, our approach yields a test complementary to
those of Robinson (1991a) in detecting strong-dependence alternatives. Granger
(1969) pointed out that most economic time series typically have a spectral
density that has a peak at frequency zero and then decays to zero as the
frequency increases.

To obtain an estimate of f (0), we define the regression residual

ε̂ t � Yt ÿ g(X t, ^b)

where ^b is a
p

T-consistent estimator for b0:

ASSUMPTION A3. ^b ÿ b0 � OP(Tÿ1=2).
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One example of ^b is the nonlinear least squares estimator, namely,

^b � arg min
b

Tÿ1
XT

t�1

fYt ÿ g(X t, b)g2
:

Such an estimator ignores possible ARCH effects and thus may not be efficient,
but it is still consistent for b0 under both H0 and HA. Now define the sample
autocorrelation function of ε̂2

t as

r̂( j) �
^R( j)
^R(0)

j � 0, 1, . . ., T ÿ 1

where the autocovariance

^R( j) � Tÿ1
XT

t� j�1

ε̂2
t

^σ 2
ÿ 1

� �
ε̂2

tÿ j

^σ 2
ÿ 1

� �

with ^σ 2
� Tÿ1

PT
t�1 ε̂2

t : A kernel-based estimator for f (0) is given by

^f (0) �
1

2π
�

1
π

XTÿ1

j�1

k
j

q

� �

r̂( j)

where q is a positive integer and k is a kernel function satisfying Assumption A4.

ASSUMPTION A4. The function k: R ! [ÿ1, 1] is symmetric and continuous
at zero and all but a finite number of points, with k(0) � 1 and
�
1

0 jk(z)j dz ,1: In addition, 0 ,
P

1

j�1 k2( j=q) ,1 for any positive finite
integer q.

Most commonly used kernels typically give more weight to lower orders of
lags and less weight to higher orders of lags. The exception is the truncated
kernel k(z) � 1 for jzj < 1 and k(z) � 0 otherwise, which gives equal weight
for each lag. As will be seen below, non-uniform kernels deliver better power
than the truncated kernel.

Our test S (say) is based on comparison between ^f (0) and 1=2π:

S � Vÿ1=2
T T 1=2πf^f (0)ÿ 1=2πg

� Vÿ1=2
T T 1=2

XTÿ1

j�1

k
j

q

� �

r̂( j)

where

VT �
XTÿ1

j�1

1ÿ
j

T

� �

k2 j

q

� �

is approximately the variance of T 1=2πf^f (0)ÿ 1=2πg: The factor 1ÿ j=T can
be viewed as a finite sample correction. For large q, we can use q

�
1

0 k2(z) dz to
substitute for VT :
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THEOREM 1. Suppose Assumptions A1–A4 hold, and let q=T ! 0: Then
S ! N(0, 1) in distribution under H0.

The proof is given in the Appendix. We note that S is a one-sided test because S
will diverge to �1 under HA. Asymptotically, negative values of S occur only
under H0. Therefore, appropriate one-sided upper-tailed N(0, 1) critical values
should be used.

The condition q=T ! 0 is very weak. It permits q to be fixed, or to grow
with the sample size but at a slower rate. Automatic choices of q via data-
driven methods are discussed in Section 4.
When the truncated kernel is used, our approach yields

STRUN �
T

q

� �1=2Xq

j�1

r̂( j) (4)

where we have used q for VT. This is essentially Lee and King’s LBS test (2) for
ARCH(q) and GARCH( p, q): The differences are that we permit (but do not
require) q to grow with the sample size and use a different variance estimator.
Thus, Lee and King’s test can be interpreted as a special case of our approach
with the use of the truncated kernel. As will be seen below, many non-uniform
kernels have better power than the truncated kernel. Simulation also shows that
the use of the different variance estimator in (4) gives better power than Lee and
King’s test.

4. ASYMPTOTIC LOCAL POWER

We now evaluate the asymptotic power of the test under the following sequence
of local alternatives:

Ha: ht � σ 2
0 1� aT

X1

j�1

â j(î2
tÿ j ÿ 1)

( )

where â j > 0,
P

1

j�1 â j ,1, and aT ! 0: To ensure positivity of ht, we
assume aT

P
1

j�1 â j , 1 for all T > 1.

THEOREM 2. Suppose Assumptions A1–A4 hold, and let q2
=T ! 0: Then

S ! N (µ, 1) in distribution

under Ha with aT � (q=T )1=2, where

µ �
X1

j�1

k
j

q

� �

â j

�

qÿ1
X1

j�1

k2 j

q

� �( )1=2

: (5)

If in addition q !1, then
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µ �
X1

j�1

â j

� �
1

0
k2(z) dz

� �1=2

: (6)

The proof is given in the Appendix. By Theorem 2, the asymptotic local power
of S is limT!1P(S . Cα) � 1ÿΦ(Cα ÿ µ), where Cα is the asymptotic upper-
tailed N(0, 1) critical value at level α 2 (0, 1), and Φ is the cumulative
distribution function of N(0, 1):

We now compare the efficiencies of various weighting functions. First, we
consider fixed q. In this case, we assume â j � 0 for j . q. The optimal weight,
to a proportionality, is k( j=q) � â j=

Pq
j�1 â j; this maximizes the noncentrality

µ in (5), yielding the best asymptotic local power. Obviously, the optimal
weight depends on the alternative fâ jg. If the â j decreases as the lag j
increases, the optimal weight should also decrease as j increases. When â j � â
for j � 1, . . ., q, the optimal weight is uniform weighting. Lee and King’s
(1993) test (2) or the truncated-kernel-based test (4) has the best power against
this uniform alternative.

The conclusions on the relative efficiency of various weighting functions
change if q !1 as the sample size T !1. In this case, the noncentrality µ
is given by (6). The optimal weight minimizes

�
1

0 k2(z) dz over an appropriate
class of k, and this optimal kernel does not depend on the alternative. The
uniform weighting function or the truncated kernel is no longer optimal. This is
so even when â j � â for j � 1, . . ., q0 and â j � 0 for j . q0, where q0 is a
fixed integer. To see this, we compare, for example, the Bartlett kernel
kBAR(z) � (1ÿ jzj)1(jzj < 1) and the truncated kernel kTRUN(z) � 1(jzj < 1),
where 1(·) denotes the indicator function. Let q � cT v, for 0 , v , 1/2 and
0 , c , 1. Following Pitman (1979), we obtain Pitman’s relative efficiency of
k2 with respect to k1

REF(k2: k1) �
�
1

0
k2

1(z) dz

��
1

0
k2

2(z) dz

( )1=(1ÿv)

:

We have REF(kBAR: kTRUN) � 31=(1ÿv) . 3 for any 0 , v , 1/2. Thus, the
Bartlett kernel is three times as efficient as the truncated kernel for large q.
In fact, most non-uniform kernels are more efficient than the truncated kernel.
Therefore, we expect that for large q our test with non-uniform kernels will be
more efficient than Lee and King’s LBS test.

We now consider the optimal weighting function that maximizes the power of
S over a suitable class of kernels. Let r . 0 be the largest positive integer such
that

k(r)
� lim

z!0

1ÿ k(z)

jzjr

� �

exists and is finite and non-zero. We consider the class of kernels with r � 2:
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K (τ) � k: k satisfies A4, k(z)
�

1
2τ

2, and
�
1

ÿ1

k(z) exp (iλz) dz > 0 for all λ
� �

:

(7)

It is well known (e.g. Priestley, 1962; Andrews, 1991) that the quadratic-spectral
(QS) kernel

k(z) �
3

5z2

� �
sin (51=2z)

51=2z
ÿ cos (51=2z)

� �

z 2 (ÿ1, 1)

minimizes
�
1

0 k2(z) dz over K (τ): Therefore, the QS kernel maximizes the
power of the S test over K (τ): This kernel is also optimal for spectral density
estimation in terms of the mean squared error (MSE) criterion. The class (7)
includes the Daniell, Parzen and QS kernels, but rules out the truncated and
Bartlett kernels. We emphasize that the optimal weighting function crucially
depends on the form of the test statistic. For example, Hong (1996) showed that,
for some frequency-domain-based tests in a different context, the Daniell kernel
(rather than the QS kernel) is optimal within the class K (τ):

For all ARCH tests, the choice of q is important. Because generally no prior
information is available in practice, applied workers usually try several, perhaps
many, different q. It is not uncommon that some of these test statistics are
significant but some are not. Thus, it is a delicate business to determine the
overall significance level, because these statistics are not independent. In the
present context, our frequency domain approach leads to a natural choice of q
via data-driven methods. For spectral density estimation, there are basically two
types of data-driven methods: the cross-validation method (e.g. Wahba and
Wold, 1975; Beltrão and Bloomfield, 1987; Hurvich, 1985; Robinson, 1991b)
and the narrow-band method (e.g. Andrews, 1991; Newey and West, 1994).
Most cross-validation methods choose q to minimize an appropriate MSE
criterion. Beltrão and Bloomfield’s (1987) method chooses q to maximize a
Whittle approximation for the log-likelihood function. The chosen q, as shown
in Robinson (1991b), asymptotically minimizes a weighted integrated MSE
criterion for the spectral density estimator, with the weight depending on the
true spectral density. Because cross-validation methods use information on an
interval, typically [ÿπ, π], they are suitable for spectral density estimation over
an interval. In contrast, the narrow-band method chooses q to minimize an
appropriate MSE criterion for the spectral density estimator at a single
frequency, typically frequency zero. Therefore, it is suitable for estimation of
the spectral density at a single frequency. The method of Andrews (1991) is of
the plug-in type and uses parametric estimates. This method is simple to use in
practice. It may not deliver the optimal q in terms of the MSE criterion, but
the optimal rate for q is still obtained. Newey and West’s (1994) method is also
of the plug-in type but uses nonparametric estimates. This method delivers the
optimal q in terms of the MSE criterion. Because our test statistic is based on
estimation of the spectral density of squared residuals at frequency zero, it
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seems more appropriate to use the narrow-band method here. We compare the
narrow-band method and the cross-validation in simulation.

5. SIMULATION

We now investigate the finite sample performances of our tests in comparison
with Lee and King’s (1993) LBS test and Engle’s (1982) LM test. Consider the
data-generating process

Yt � X 9tb0 � ε t ε t � î t h
1=2
t t � 1, . . ., T

where X t � (1, mt)9, mt � λmtÿ1 � v t and v t � NID(0, σ 2
v): We consider three

processes for ht: (a) ht � ω; (b) ht � ω� αε2
tÿ1; and (c) ht � ω� αε2

tÿ1 �

âhtÿ1:

There is no ARCH under (a). Alternative (b) is an ARCH(1) process, often
examined in existing simulation studies (e.g. Engle et al., 1985; Lee and King,
1993). Alternative (c) is a GARCH(1, 1) process. When α � â , 1, the
GARCH(1, 1) can be expressed as an ARCH(1) with coefficients declining at
an exponential rate. The GARCH(1, 1) model has been the workhorse in the
literature since it was introduced by Bollerslev (1986). Empirical studies find
that this model is adequate in modeling volatilities of most economic and
financial time series.

We set b0 � (1, 1)9 and ω � 1. For the exogenous variable mt, we set
λ � 0.8 and σ 2

v � 4: As in Engle et al. (1985), mt is generated for each
experiment and then held fixed from iteration to iteration. For ARCH(1), we
use α � 0:3, 0:95, and set the initial condition ε2

0 � 0; for GARCH(1, 1), we
use (α, â) � (0:3, 0:2), (0:3, 0:65), and set the initial conditions ε0 � 0 and
h0 � 1: Sample sizes of T � 64, 128, are considered. To reduce the possible
effects of the initial conditions, we generate T � 100 observations and then
discard the first 100. For each experiment, the replication number is 5000 for
(a), and 1000 each for (b) and (c). The simulation is conducted using a GAUSS
random number generator on IBM RISC System/6000.

To investigate the effect of the choice of kernel function k on size and
power, we use five kernels: the Bartlett, Daniell, Parzen, QS and truncated
kernels:

Bartlett k(z) �
1ÿ jzj for jzj < 1
0 otherwise

�

Daniell k(z) �
sin (πz)

πz
z 2 (ÿ1, 1)

Parzen k(z) �
1ÿ 6jπz=6j2 for jzj < 3=π
2(1ÿ jπz=6j)3 for 3=π < jzj < 6=π
0 otherwise;

8

<

:
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QS k(z) �
9

5(πz)2

� �
sin f(5=3)1=2πzg

(5=3)1=2πz
ÿ cos f(5=3)1=2πzg

" #

z 2 (ÿ1, 1)

Truncated k(z) �
1 for jzj < 1
0 otherwise:

�

The first four kernels are non-uniform and the truncated kernel is uniform. The
Daniell, Parzen and QS kernels belong to the class K (π/31=2) in (7). To
investigate the effect of the choice of q, we use five q for each sample size. The
first three are deterministic: q � 1, 4, 8. The last two are data-driven methods:
Beltrão and Bloomfield’s (1987) cross-validation log-likelihood method and
Andrews’ (1991) narrow-band plug-in method. These data-driven methods are
used for their simplicity. For the cross-validation, we use a fast Fourier transform
algorithm and choose an integer q by a grid search over the range q � 1 to
q � 20, with the grid interval equal to 1; for Andrews’ plug-in method, we use
an ARCH(1) approximating process and round the resulting real-valued q to the
nearest integer. We also restrict q to the range 1–20. To ensure that the first q
sample autocorrelations are used in the test statistic, we use the truncation lag
number q � 1 for non-uniform kernels, because the weight for the lag j � q � 1
is zero.

In addition to the S test, we also consider Lee and King’s (1993) LBS test
that is robust to non-normality, as well as Engle’s (1982) LM test TR2. For
these two tests against alternatives (b) and (c), the theoretical optimal lag
number is q � 1 (cf. Lee, 1991; Lee and King, 1993), which requires
knowledge of the alternatives. For comparison we also use q � 4, 8.

Table I reports size performances under (a). For S tests, non-uniform weights
generally yield better sizes than uniform weighting. Both STRUN(q) and LBS(q)
have similar sizes in all cases. All the tests have best sizes for q � 1 and
poorer sizes for larger q. Both data-driven methods give reasonable sizes for
the S test.

Table II reports power against ARCH(1) using the 10% and 5% empirical
critical values obtained from the replications under (a). The use of empirical
critical values provides an equal basis to compare powers. We first consider
q � 1. The tests SBAR(1), SPAR(1), SQS(1), STRUN(1) and LBS(1) have the same
power and are more powerful than LM(1), suggesting the gain of exploiting the
one-sided nature of the alternative. For the S test, the Daniell kernel has
slightly lower power than the Bartlett, Parzen and QS kernels for T � 64. This
may be due to the fact that the Daniell kernel gives negative, although small,
weights for some lags j. Next, we consider q . 1. As expected, all the tests
have less power than when q � 1. For our S test, non-uniform kernels have
substantially better power than the truncated kernel, suggesting the gain of
using non-uniform weights. The QS kernel has slightly better power than the
Daniell and Parzen kernels in many cases. The S tests have better power than
the LBS test. The efficiency gain of the S test over the LBS test is substantial
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when q is large, confirming our asymptotic analysis. Interestingly, although
STRUN(q) is asymptotically equivalent to LBS(q), it has better power than
LBS(q). This is perhaps due to use of a different asymptotic variance estimator.
Finally, the data-driven methods give reasonable power for the S test, although
slightly lower than when q � 1 is used. The narrow-band method gives better
power than the cross-validation.

Table III reports power against GARCH(1, 1): First, we consider q � 1. For
(α, â) � (0:3, 0:2), SBAR(1), SPAR(1), SQS(1), STRUN(1) and LBS(1) have similar
powers and are more powerful than LM(1). Again, for the S test, the Daniell
kernel gives slightly lower power than the Bartlett, Parzen and QS kernels.
Next, we examine q . 1. For (α, â) � (0:3, 0:2), all the tests become less
powerful as q increases. For (α, â) � (0:3, 0:65), however, better powers are
obtained for larger q. This clearly suggests that it is better to include more lags
in detecting highly persistent alternatives. Indeed, when q � 1 is used, the
powers of all tests are hardly affected by the change of â. For q . 1, the S
tests with non-uniform kernels have better power than the truncated-kernel-
based test and the LBS test. This is true even for (α, â) � (0:3, 0:65), the
highly persistent alternative. The QS kernel has slightly better power than the
Daniell kernel. Interestingly, for (α, â) � (0:3, 0:65), the Parzen kernel has
slightly better power than the QS kernel for q � 4. Again, our truncated-kernel-

TABLE I

SIZE AT THE 10% AND 5% SIGNIFICANCE LEVELS

q � 1 q � 4 q � 8 CV PI

10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

T � 64
S BAR 8.1 4.2 6.0 3.6 4.9 3.0 7.3 3.9 7.3 3.1

DAN 8.5 4.4 7.0 4.2 6.0 3.6 8.7 5.2 7.5 3.7
PAR 7.4 4.3 5.8 3.4 4.3 2.7 7.5 4.1 5.7 3.8
QS 8.1 4.4 6.3 3.8 5.1 3.2 8.2 4.9 6.5 3.1

TRUN 8.0 4.2 5.2 3.2 4.1 2.3
LBS 8.2 4.4 5.3 2.7 5.3 2.5
LM 7.3 3.5 6.8 3.4 5.1 2.4

T � 128
S BAR 8.7 5.2 7.4 4.5 6.9 4.3 10.4 6.0 7.9 3.5

DAN 9.0 4.8 8.0 4.6 8.0 4.7 11.0 6.5 8.5 4.4
PAR 8.2 5.0 7.4 4.4 6.5 3.7 10.2 6.2 6.9 3.8
QS 8.8 5.0 7.9 4.5 7.1 4.4 10.8 6.7 7.5 3.7

TRUN 8.6 5.1 7.2 4.3 6.0 3.4
LBS 8.8 5.1 6.5 3.2 5.6 2.8
LM 8.6 4.1 8.3 4.2 7.8 3.9

Notes: Model: Yt � 1� mt � ε t , mt � 0:8mtÿ1 � v t , v t � NID(0, 4), ε t � î t h
0:5
t , î t � NID(0, 1),

ht � 1:
5000 replications.
CV, cross-validation; PI, narrow-band plug-in method.
BAR, Bartlett kernel; DAN, Daniell kernel; PAR, Parzen kernel; QS, quadratic-spectral kernel;
TRUN, truncated kernel.
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TABLE II

NUMBER OF REJECTIONS AGAINST ARCH(1) AT THE 10% AND 5% EMPIRICAL CRITICAL VALUES

T � 64 T � 128

q � 1 q � 4 q � 8 CV PI q � 1 q � 4 q � 8 CV PI

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

α � 0.3
S BAR 573 438 494 371 412 294 493 357 568 412 785 702 678 577 587 440 677 567 778 666

DAN 528 404 481 345 369 261 479 343 522 415 769 664 669 550 524 400 660 529 730 611
PAR 556 423 461 332 362 251 498 362 533 394 777 675 656 532 508 386 710 596 733 621
QS 557 434 474 358 382 270 492 357 560 442 784 701 676 568 550 411 710 582 770 649

TRUN 574 438 394 269 289 191 787 699 554 436 396 291
LBS 563 441 351 224 216 139 797 695 516 405 349 241
LM 454 364 344 260 285 199 725 632 585 490 478 383

α � 0.95
S BAR 901 822 850 778 780 674 815 690 898 816 988 968 973 945 942 895 955 909 986 971

DAN 866 778 834 745 728 622 847 731 859 778 974 956 965 944 921 855 954 910 969 952
PAR 906 829 827 735 725 599 847 735 900 811 989 969 961 934 836 750 956 919 986 962
QS 898 815 842 754 749 629 845 740 895 828 989 969 970 942 928 875 960 926 986 970

TRUN 901 822 759 647 595 469 988 968 931 890 814 729
LBS 896 825 681 553 432 314 989 970 911 854 728 603
LM 839 778 705 636 605 537 972 952 920 889 857 811

Notes: Model: Yt � 1� mt � ε t , mt � 0:8mtÿ1 � v t , v t � NID(0, 4), ε t � î t h
0:5
t , î t � NID(0, 1), ht � 1� αε2

tÿ1:

1000 replications.
CV, cross-validation; PI, narrow-band plug-in method.
BAR, Bartlett kernel; DAN, Daniell kernel; PAR, Parzen kernel; QS, quadratic-spectral kernel; TRUN, truncated kernel.
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TABLE III

NUMBER OF REJECTIONS AGAINST GARCH(1, 1) AT THE 10% AND 5% EMPIRICAL CRITICAL VALUES

T � 64 T � 128

q � 1 q � 4 q � 8 CV PI q � 1 q � 4 q � 8 CV PI

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

(α, â) � (0:3, 0:2)
S BAR 576 456 573 445 499 386 554 413 577 441 801 714 772 676 683 576 746 661 798 705

DAN 507 399 559 428 462 337 519 417 522 419 761 649 754 663 634 531 733 620 746 663
PAR 593 469 539 422 461 330 561 426 587 463 816 718 741 645 630 515 769 657 803 701
QS 571 458 553 436 478 350 553 413 578 469 803 721 763 669 655 552 767 663 801 708

TRUN 576 455 501 356 362 250 804 713 680 569 511 399
LBS 571 451 445 313 270 180 804 711 642 537 453 322
LM 468 380 369 292 303 233 734 644 629 536 516 438

(α, â) � (0:3, 0:65)
S BAR 558 455 742 635 763 681 686 610 560 481 844 739 953 896 961 923 927 894 852 766

DAN 465 336 701 589 748 648 688 601 487 418 728 616 926 863 955 905 933 886 770 708
PAR 640 536 760 666 759 674 688 606 651 560 905 838 961 924 956 916 933 889 912 862
QS 572 450 738 638 763 670 691 602 584 493 849 761 954 891 958 925 929 884 855 788

TRUN 559 454 738 637 741 615 846 737 946 905 934 890
LBS 556 452 687 586 590 484 851 732 924 882 879 813
LM 472 391 537 439 480 400 759 700 837 776 793 715

Notes: Model: Yt � 1� mt � ε t , mt � 0:8mtÿ1 � v t , v t � NID(0, 4), ε t � î t h
0:5
t , î t � NID(0, 1), ht � 1� αε2

tÿ1 � âhtÿ1:

1000 replications.
CV, cross-validation; PI, narrow-band plug-in method.
BAR, Bartlett kernel; DAN, Daniell kernel; PAR, Parzen kernel; QS, quadratic-spectral kernel; TRUN, truncated kernel.
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based test has better power than LBS(q), perhaps because of the use of a
different asymptotic variance. Also, the efficiency gain of non-uniform
weighting over uniform weighting and LBS(q) is substantial for large q.
Finally, for data-driven methods, when (α, â) � (0:3, 0:2), the narrow-band
method gives better power for the S test. For (α, â) � (0:3, 0:65), however, the
cross-validation gives better power.

We summarize our findings.

(i) For q � 1, the new S test with use of the Bartlett, Parzen, QS and
truncated kernels and the LBS test have the same power against ARCH(1) and
GARCH(1, 1) respectively. They all have better power than the LM test.

(ii) For q . 1, the S tests with non-uniform weights have better power than
the truncated-kernel-based test, which in turn is better than the LBS test. The
efficiency gain from using non-uniform weighting is substantial for large q. The
S tests with non-uniform weights have better power than the LM test. The LBS
test has better power than the LM test for ARCH(1) and less persistent
GARCH(1, 1), but not for persistent GARCH(1, 1):

(iii) For ARCH(1) and less persistent GARCH(1, 1), all the tests with q � 1
have best power. For persistent GARCH(1, 1), however, none has best power
when q � 1, although q � 1 is the theoretical optimal order for both the LM
and the LBS tests. Instead, all the tests have better power when more lags are
used.

(iv) The data-driven methods (the cross-validation and narrow-band methods)
yield reasonable size and power for the S test. To some extent, these methods
reveal information on the true alternative.

6. CONCLUSION

Most existing ARCH tests fail to exploit the one-sided nature of the alternative
hypothesis. Lee and King (1993) recently proposed a one-sided locally most
mean powerful score-based test for ARCH effects, by using SenGupta and
Vermeire’s (1986) approach for testing multiparameter hypotheses. Using a
frequency domain approach, in this paper a new one-sided N(0, 1) test for
ARCH effects of the disturbance of a dynamic regression model is proposed.
The test is based on a weighted sum of sample autocorrelations of squared
regression residuals, with the weighting function typically giving more weight to
lower orders of lags and less weight to higher orders of lags. Lee and King’s
(1993) test can be viewed as a special case of the present approach with the use
of uniform weighting. Many non-uniform weighting schemes deliver better
power than uniform weighting; the efficiency gain is substantial when a relatively
large q is used. A simulation experiment confirms the gains from exploiting the
one-sided nature of the alternative hypothesis and from using non-uniform
weighting. Some data-driven methods for choosing the number of lags deliver
reasonable size and power in finite samples.
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MATHEMATICAL APPENDIX

PROOF OF THEOREM 1. Throughout this appendix, ‘!p’ and ‘!d’ denote convergence
in probability and in distribution respectively. For j > 0, put

�R( j) � Tÿ1
XT

t� j�1

(î2
t ÿ 1)(î2

tÿ j ÿ 1)

and R( j) � E�R( j): Then

XTÿ1

j�1

k
j

q

� �

^R( j) �
XTÿ1

j�1

k
j

q

� �

�R( j)�
XTÿ1

j�1

k
j

q

� �

f^R( j)ÿ �R( j)g:

By Lemmas A1 and A2 below, we obtain Vÿ1=2
T T 1=2

PTÿ1
j�1 k( j=q)^R( j)=R(0) !d N(0, 1):

The normality for S follows by Slutsky’s theorem and ^R(0)ÿ R(0) !p 0:

LEMMA A1. Vÿ1=2
T T 1=2

PTÿ1
j�1 k( j=q)f^R( j)ÿ �R( j)g � oP(1):

LEMMA A2. Vÿ1=2
T T 1=2

PTÿ1
j�1 k( j=q)�R( j)=R(0) !d N(0, 1):

PROOF OF LEMMA A1. We consider q !1 as T !1; the proof for fixed q is similar.
Put ^î t � ε̂ t=^σ : Then we have

^R( j)ÿ ~R( j) � Tÿ1
XT

t� j�1

f(^î2
t ÿ 1)(^î2

tÿ j ÿ 1)ÿ (î2
t ÿ 1)(î2

tÿ j ÿ 1)g

� Tÿ1
XT

t� j�1

(î2
t ÿ 1)(^î2

tÿ j ÿ î2
tÿ j)� Tÿ1

XT

t� j�1

(^î2
t ÿ î2

t )(î
2
tÿ j ÿ 1)

� Tÿ1
XT

t� j�1

(^î2
t ÿ î2

t )(
^î2

tÿ j ÿ î2
tÿ j)

�
^A1( j)� ^A2( j)� ^A3( j), say. (A1)

Putting ut � î2
t ÿ 1 and noting î t � ε t=σ0 under H0, where σ 2

0 � E(ε2
t ), we have

^A1( j) � Tÿ1
XT

t� j�1

(î2
t ÿ 1)(^î2

tÿ j ÿ î2
tÿ j)

� ^σ ÿ2Tÿ1
XT

t� j�1

ut(ε̂2
tÿ j ÿ ε2

tÿ j)� (^σ ÿ2
ÿ σÿ2

0 )Tÿ1
XT

t� j�1

utε2
tÿ j

� ^σ ÿ2Tÿ1
XT

t� j�1

ut(ε̂ tÿ j ÿ ε tÿ j)
2
� 2^σ ÿ2Tÿ1

XT

t� j�1

utε tÿ j(ε̂ tÿ j ÿ ε tÿ j)

� (^σ ÿ2
ÿ σÿ2

0 )Tÿ1
XT

t� j�1

utε2
tÿ j

� ^σ ÿ2
^B11( j)� 2^σ ÿ2

^B12( j)� (^σ ÿ2
ÿ σÿ2

0 )^B13( j), say. (A2)

Noting that ε̂ t ÿ ε t � (b0 ÿ
^b)9=b g(X t, �b), where i�bÿ b0 i < i^bÿ b0 i, we have
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�
�
�
�
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2
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:
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^bi2
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�
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�
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:
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t

 !1=2

3 Tÿ1
XT

t�1

i=b g(X t, �b)i4

( )1=2

� OP
q

T

� �

(A3)

by the Cauchy–Schwarz inequality and Assumptions A1–A4, where

qÿ1
XTÿ1

j�1

jk( j=q)j !
�
1

0
jk(z)j dz:

Next, using ε̂ t ÿ ε t � (b0 ÿ
^b)9=b g(X t, b0)� 1

2(b0 ÿ
^b)9=2

b g(X t, �b)(b0 ÿ
^b), we have
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(A4)

by Markov’s inequality and EiTÿ1PT
t� j�1 utε tÿ j=b g(X tÿ j, b0)i2

� O(Tÿ1) given
E(utjI tÿ1) � 0: We also have

XTÿ1

j�1

k
j

q

� �

^B13( j) � OP
q

T 1=2

� �

(A5)

by Markov’s inequality and E(Tÿ1
PT

t� j�1 utε2
tÿ j)

2
� O(Tÿ1) given Assumption A1.

Collecting (A2)–(A5) and noting ^σ 2
ÿ σ 2

0 � OP(Tÿ1=2), we obtain

XTÿ1

j�1

k
j

q

� �

^A1( j) � OP
q

T

� �

: (A6)

Similarly, we have

XTÿ1

j�1

k
j

q

� �

^A2( j) � OP
q

T

� �

: (A7)
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Next, we turn to ^A3( j): By the Cauchy–Schwarz inequality, we have

sup
1< j<Tÿ1

j^A3( j)j < Tÿ1
XT

t�1

(^î2
t ÿ î2

t )
2

< 2^σ ÿ4Tÿ1
XT

t�1

(ε̂2
t ÿ ε2

t )
2
� 2(^σ ÿ2

ÿ σÿ2
0 )2Tÿ1

XT

t�1

ε4
t :

Recalling that ε̂2
t ÿ ε2

t � (ε̂ t ÿ ε t)2
� 2ε t(ε̂ t ÿ ε t), we have

Tÿ1
XT

t�1

(ε̂2
t ÿ ε2

t )
2 < 2Tÿ1

XT

t�1

(ε̂ t ÿ ε t)
4
� 8Tÿ1

XT

t�1

ε2
t (ε̂ t ÿ ε t)

2

< 2ib0 ÿ
^bi4Tÿ1

XT

t�1

i=b g(X t, �b)i4

� 8ib0 ÿ
^bi2Tÿ1

XT

t�1

ε2
t i=b g(X t, �b)i2

� OP(Tÿ1):

This, together with ^σ 2
ÿ σ 2

0 � OP(Tÿ1=2), yields
�
�
�
�

XTÿ1

j�1

k
j

q

� �

^A3( j)

�
�
�
�

<
XTÿ1

j�1

�
�
�
�
k

j

q

� ��
�
�
�

Tÿ1
XT

t�1

(^î2
t ÿ î2

t )
2

( )

� OP
q

T

� �

: (A8)

Hence, from (A1), (A6)–(A8) and VT � O(q), we have

Vÿ1=2
T T 1=2

XTÿ1

j�1

k( j=q)f^R( j)ÿ �R( j)g � OP(q1=2
=T 1=2) � oP(1)

given q=T ! 0: The proof for fixed q is similar and is omitted here. This completes the
proof.

PROOF OF LEMMA A2. Put �WT � T 1=2
PTÿ1

j�1 k( j=q)�R( j)=R(0) � Tÿ1=2
PTÿ1

j�1 W t, where

W t � Rÿ1(0)ut

Xtÿ1

j�1

k
j

q

� �

utÿ j

8

<

:

9

=

;
: (A9)

Because fW t, Ftg is a martingale difference sequence, where Ft is a sigma field
consisting of us, s < t, we apply Brown’s (1971) martingale limit theorem, which implies
that fvar ( �WT )gÿ1=2

�WT !
d N(0, 1) if

fvar ( �WT )gÿ1Tÿ1
XT

t�2

E[W 2
t 1fjW tj. δT 1=2 var1=2 ( �WT )g] ! 0 (A10)

for every δ . 0, and

fvar ( �WT )gÿ1Tÿ1
XT

t�3

E(W 2
t jFtÿ1) !p 0: (A11)

Given Assumption A1, var ( �WT ) �
PT

t�2

P tÿ1
j�1 k2( j=q) � VT :
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We first consider q !1 as T ! 1. Because qÿ1VT !
�
1

0 k2(z) dz, we have
var ( �WT ) � O(q): Thus, we can verify (A10) by showing that
qÿ2Tÿ2

PT
t�2 E(W 4

t ) � o(1): Put µ4 � E(u4
t ): By Assumption A1 we have

E(W 4
t ) �

µ4

R4(0)

� �

E
Xtÿ1

j�1

k
j

q

� �

utÿ j

8

<

:

9

=

;

4

�

µ2
4

R4(0)

( )
Xtÿ1

j�1

k4 j

q

� �

� 6
µ4

R2(0)

� �
Xtÿ1

j�2

Xjÿ1

i�1

k2 j

q

� �

k2 i

q

� �

< 3
µ2

4

R4(0)

( )
Xtÿ1

j�1

k2 j

q

� �
8

<

:

9

=

;

2

:

It follows that qÿ2Tÿ2
PT

t�2 E(W 4
t ) < 3fµ2

4=R4(0)gTÿ1
fqÿ1

PTÿ1
j�1 k2( j=q)g2

� O(Tÿ1):
Thus, (A10) holds.

Next, we verify (A11) by showing that qÿ2 var fTÿ1PT
t�2 E(W 2

t jFtÿ1)g ! 0: By
(A9),

E(W 2
t jFtÿ1) � Rÿ1(0)

Xtÿ1

j�1

k
j

q

� �

utÿ j

8

<

:

9

=

;

2

� E(W 2
t )� Rÿ1(0)

Xtÿ1

j�1

k2 j

q

� �

fu2
tÿ j ÿ R(0)g

� 2Rÿ1(0)
Xtÿ1

j�2

Xjÿ1

i�1

k
j

q

� �

k
i

q

� �

utÿiutÿ j

� E(W 2
t )� Rÿ1(0)At � 2Rÿ1(0)Bt, say.

It follows that

Tÿ1
XT

t�2

fE(W 2
t jFtÿ1)ÿ E(W 2

t )g � Rÿ1(0)Tÿ1
XT

t�2

At � 2Rÿ1(0)Tÿ1
XT

t�2

Bt:

Thus, it suffices to show that qÿ2 var (Tÿ1
PT

t�2 At) ! 0 and qÿ2 var (Tÿ1
PT

t�2 Bt) ! 0:
Noting that At is a weighted sum of independent variables u2

tÿ j ÿ R(0), we have
E(A2

t ) � fµ4 ÿ R2(0)g
P tÿ1

j�1 k4( j=q): It follows by Minkowski’s inequality that

qÿ2 E Tÿ1
XT

t�2

At

 !2

< qÿ2 Tÿ1
XT

t�2

(EA2
t )

1=2

( )2

< qÿ1
fµ4 ÿ R2(0)g qÿ1

Xtÿ1

j�1

k4 j

q

� �
8

<

:

9

=

;

� O(qÿ1):
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On the other hand, for t > s, we have

E(Bt Bs) � R2(0)
Xtÿ1

j1�2

Xj1ÿ1

i1�1

Xsÿ1

j2�2

Xj2ÿ1

i2�1

k
j1
q

� �

k
i1
q

� �

k
j2

q

� �

k
i2
q

� �

δ tÿi1,sÿi2 δ tÿ j1,sÿ j2

� R2(0)
Xsÿ1

j2�2

Xj2ÿ1

i2�1

k
t ÿ s� j2

q

� �

k
t ÿ s� i2

q

� �

k
j2

q

� �

k
i2
q

� �

where δij � 1 for i � j and δij � 0 otherwise. It follows that

qÿ2 E Tÿ1
XT

t�2

Bt

 !2

� qÿ2Tÿ2
XT

s�2

E(B2
t )� 2qÿ2Tÿ2

XT

t�3

Xtÿ2

s�2

E(Bt Bs)

� O(Tÿ1):

Therefore, (A11) holds. By Brown’s theorem, we have Vÿ1=2
T

�WT !
d N(0, 1):

Next, we consider fixed q. We first decompose

XTÿ1

j�1

k
j

q

� �

�R( j) �
Xl

j�1

k
j

q

� �

�R( j)�
XTÿ1

j� l�1

k
j

q

� �

�R( j)

for some l !1, l=T ! 0: Because TEj
PTÿ1

j� l�1 k( j=q)�R( j)j2 < R2(0)
P

1

j� l k2( j=q) ! 0
as l !1, we have T 1=2

PTÿ1
j� l�1 k( j=q)�R( j) � oP(1): By Brown’s theorem, we can show

Xl

j�1

1ÿ
j

T

� �

k2 j

q

� �
8

<

:

9

=

;

ÿ1=2

T 1=2
Xl

j�1

k
j

q

� �
�R( j)

R(0)
!

d N(0, 1)

where
P l

j�1(1ÿ j=T)k2( j=q) is bounded from below and from above. Also,
VT ÿ

P l
j�1(1ÿ j=T)k2( j=q) !p 0: It follows that Vÿ1=2

T
�WT !

d N(0, 1): This completes
the proof.

PROOF OF THEOREM 2. We consider only q !1 as T !1; the proof for fixed q is
similar. Put ~R( j) � Tÿ1

PT
t� j�1(ε2

t=σ 2
0 ÿ 1)(ε2

tÿ j=σ 2
0 ÿ 1), where σ 2

0 � E(ε2
t ): Then

following the analogous but more tedious reasoning of Lemma A1, we obtain

Vÿ1=2
T T 1=2

XTÿ1

j�1

k
j

q

� �

f^R( j)ÿ ~R( j)g � OP
q

T 1=2

� �

� oP(1)

given that q2
=T ! 0: Therefore, it remains to show that

Vÿ1=2
T T 1=2

XTÿ1

j�1

k
j

q

� �
~R( j)
R(0)

!
d N(µ, 1)

where µ �
P

1

j�1 â j=f
�
1

0 k2(z) dzg1=2
: Putting Vt �

P
1

i�1 âiutÿi, where ut � î2
t ÿ 1, we

have

~R( j) � Tÿ1
XT

t� j�1

(ut � aT Vt)(utÿ j � aT Vtÿ j)
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� �R( j)� aT Tÿ1
XT

j�1

Vt utÿ j � aT Tÿ1
XT

t� j�1

utV tÿ j � a2
T Tÿ1

XT

t� j�1

Vt Vtÿ j

� �R( j)� aT
^A4( j)� aT

^A5( j)� a2
T
^A6, say. (A12)

where, as before, �R( j) � nÿ1
PT

t� j�1 ut utÿ j: We first consider ^A4( j): Write

XTÿ1

j�1

k
j

q

� �

^A4( j) �
XTÿ1

j�1

k
j

q

� �

Tÿ1
XT

t� j�1

X1

i�1

âiutÿi

 !

utÿ j

� R(0)
XTÿ1

j�1

1ÿ
j

T

� �

â j k
j

q

� �

�

XTÿ1

j�1

â j k
j

q

� �

Tÿ1
XT

t� j�1

fu2
tÿ j ÿ R(0)g

�

XTÿ1

j�1

â j k
j

q

� �

Tÿ1
XT

t� j�1

Vt( j)utÿ j

� R(0)
XTÿ1

t� j�1

1ÿ
j

T

� �

â j k
j

q

� �

� ^B41 � ^B42, say,

where Vt( j) �
P

1

i�1,i 6� j âiutÿi: Because

Ej^B41j <
XTÿ1

j�1

â j

�
�
�
�
k

j

q

� ��
�
�
�

E Tÿ1
XT

t� j�1

fu2
tÿ j ÿ R(0)g

2

4

3

5

2
0

B
@

1

C
A

1=2

< fµ4 ÿ R2(0)g1=2Tÿ1=2
XTÿ1

j�1

â j

�
�
�
�
k

j

q

� ��
�
�
�

� O(Tÿ1=2)

we have ^B41 � OP(Tÿ1=2) by Markov’s inequality. Similarly, ^B42 � OP(Tÿ1=2) by noting
that Vt( j) and utÿ j are mutually independent with finite variances. It follows that

XTÿ1

j�1

k
j

q

� �

^A4( j) � R(0)
XTÿ1

j�1

1ÿ
j

T

� �

â j k
j

q

� �

� OP(Tÿ1=2): (A13)

Next, we consider ^A5( j) in (A12). Because ut is independent of Vtÿ j for j > 1, we
have EfA2

5( j)g < Tÿ1 E(u2
1)E(V 2

1) � R2(0)Tÿ1P1

j�1 â2
j : It follows that

E

�
�
�
�

XTÿ1

j�1

k
j

q

� �

^A5( j)

�
�
�
�

<
XTÿ1

j�1

�
�
�
�
k

j

q

� ��
�
�
�
[Ef^A2

5( j)g]1=2

< R(0)
q

T 1=2

� �
X1

j�1

â2
j

 !1=2

qÿ1
XTÿ1

j�1

�
�
�
�
k

j

q

� ��
�
�
�

8

<

:

9

=

;
:
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Therefore, by Markov’s inequality, we have

XTÿ1

j�1

k
j

q

� �

^A5( j) � OP
q

T 1=2

� �

: (A14)

Finally, we consider the last term ^A6( j) in (A12). Because Vt �
P

1

i�1 âiutÿi is a linear
process with

P
1

j�1 â j ,1 and E(u4
t ) ,1, the condition

P
1

l�ÿ1

P
1

n�ÿ1

P
1

m�ÿ1
jk(0, m, n, l)j,1 is satisfied, where k(0, m, n, l) is the fourth-order cumulant of
VtVt�mVt�nVt� l (e.g. Hannan, 1970, p. 211). It follows (e.g. Hannan, 1970) that

XTÿ1

j�1

k
j

q

� �

^A6( j) !p f V (0) ,1 (A15)

where f V (0) is the spectral density of Vt at zero frequency. Collecting (A12)–(A15) with
aT � (q=T)1=2 and q2

=T ! 0 yields

XTÿ1

j�1

k
j

q

� �
~R( j)

R(0)
�

XTÿ1

j�1

k
j

q

� �
�R( j)

R(0)
�

q

T

� �1=2XTÿ1

j�1

1ÿ
j

T

� �

â j k
j

q

� �

� oP
q

T

� �1=2
( )

:

It follows that S !d N(µ, 1) by Lemma A2,
PTÿ1

j�1 (1ÿ j=T)â j k( j=q) !
P

1

j�1 â j and
qÿ1VT !

�
1

0 k2(z) dz as q !1. This completes the proof.
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BELTRÃO, K. and BLOOMFIELD, P. (1987) Determining the bandwidth of a kernel spectrum estimate.
J. Time Ser. Anal. 8, 21–38.

BERA, A. K. and HIGGINS, M. L. (1992) A test for conditional heterskedasticity in time series
models. J. Time Ser. Anal. 13, 501–19.

—– and —– (1993) ARCH models: properties, estimation and testing. J. Econ. Surv. 7, 305–66.
BOLLERSLEV, T. (1986) A generalized autoregressive conditional heteroskedasticity. J. Econometrics

31, 307–27.
—–, CHOU, R. Y. and KRONER, K. F. (1992) ARCH modeling in finance. J. Econometrics 52, 5–59.
—–, ENGLE, R. F. and NELSON, D. B. (1994) ARCH models. In Handbook of Econometrics, Vol. IV

(eds R. F. Engle and D. L. McFadden). Amsterdam: Elsevier Science.
BOX, G. E. P. and PIERCE, D. A. (1970) Distribution of residual autocorrelations in autoregressive-

integrated moving average time series models. J. Am. Stat. Assoc. 65, 1509–26.
BROWN, B. M. (1971) Martingale central limit theorems. Ann. Math. Stat. 42, 59–66.
DIEBOLD, F. X. (1987) Testing for serial correlation in the presence of ARCH. Proc. Am. Stat.

Assoc. Bus. Econ. Stat. Sect. 323–28.
DROST, F. C. and NIJMAN, T. E. (1993) Temporal aggregation of GARCH processes. Econometrica

61, 909–27.
ENGLE, R. F. (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of

United Kingdom inflation. Econometrica 50, 987–1007.
—– and BOLLERSLEV, T. (1986) Modeling the persistence of conditional variances. Econometric Rev.

5, 1–50, 81–87.
—– and SUSMEL, R. (1993) Common volatility in international equity markets. J. Bus. Econ. Stat.

11, 167–76.
—–, HENDRY, D. F. and TRUMBLE, D. (1985) Small-sample properties of ARCH estimators and tests.

276 Y. HONG

# Blackwell Publishers Ltd 1997



Can. J. Econ. 18, 67–93.
GRANGER, C. W. J. (1969) Investigating causal relations by econometric models and cross spectral

methods. Econometrica 37, 424–38.
—– and TERASVIRTA, T. (1993) Modelling Nonlinear Economic Relationships. New York: Oxford

University Press.
GREGORY, A. W. (1989) A nonparametric test for autoregressive conditional heteroskedasticity: a

Markov-chain approach. J. Bus. Econ. Stat. 7, 107–15.
HANNAN, E. (1970) Multiple Time Series. New York: Wiley.
HIGGINS, M. L. and BERA, A. K. (1992) A class of nonlinear ARCH models. Int. Econ. Rev. 33,

137–58.
HONG, Y. (1996) Consistent testing for serial correlation of unknown form. Econometrica, 64, 837–

64.
—– and Shehadeh, R. D. (1997) A new test for ARCH effects and its finite sample performance.

Manuscript. Department of Economics, Cornell University
HURVICH, M. C. (1985) Data-driven choice of a spectrum estimate: extending the applicability of

cross-validation methods. J. Am. Stat. Assoc. 80, 933–40.
LEE, J. H. H. (1991) A Lagrange multiplier test for GARCH models. Econ. Lett. 37, 265–71.
—– and KING, M. L. (1993) A locally most mean powerful based score test for ARCH and

GARCH regression disturbances. J. Bus. Econ. Stat. 11, 17–27.
LJUNG, G. M. and BOX, G. E. P. (1978) On a measure of lack of fit in time series models.

Biometrika 65, 297–30.
MCLEOD, A. I. and LI, W. K. (1983) Diagnostic checking ARMA time series models using squared

residual autocorrelations. J. Time Ser. Anal. 4, 269–73.
MILHOJ, A. (1985) The moment structure of ARCH processes. Scand. J. Stat. 12, 281–92.
NELSON, D. (1991) Conditional heteroskedasticity in asset returns: a new approach. Econometrica

59, 347–70.
—– and CAO, C. Q. (1992) Inequality constraints in the univariate GARCH model. J. Bus. Econ.

Stat. 10, 229–35.
NEWEY, W. and WEST, K. (1994) Automatic lag selection in covariance matrix estimation. Rev.

Econ. Stud. 61, 631–53.
PITMAN, E. (1979) Some Basic Theory for Statistical Inference. London: Chapman and Hall.
PRIESTLEY, M. B. (1962) Basic considerations in the estimation of spectra. Technometrics 4, 551–

64.
ROBINSON, P. M. (1991a) Testing for strong serial correlation and dynamic conditional

heteroskedasticity in multiple regression. J. Econometrics 47, 67–84.
—– (1991b) Automatic frequency domain inference on semiparametric and nonparametric models.

Econometrica 59, 1329–64.
—– (1994) Time series with strong dependence. In Advances in Econometrics, Sixth World

Congress, Vol. 1 (ed. C. Sims). Cambridge: Cambridge University Press, pp. 47–95.
SENGUPTA, A. and VERMEIRE, L. (1986) Locally optimal tests for multiparameter hypotheses. J. Am.

Stat. Assoc. 81, 819–25.
SENTANA, E. (1995) Quadratic ARCH models. Rev. Econ. Stud. 62, 639–61.
TAYLOR, S. (1984) Modelling Financial Time Series. New York: Wiley.
WAHBA, G. and WOLD, S. (1975) Periodic splines for spectral density estimation: the use of cross-

validation for determining the degree of smoothing. Commun. Stat. 4, 125–41.
WEISS, A. (1984) ARMA models with ARCH errors. J. Time Ser. Anal. 5, 129–43.
—– (1986) Asymptotic theory for ARCH models: estimation and testing. Econometric Theory 20,

107–31.

ONE-SIDED TESTING FOR CONDITIONAL HETEROSKEDASTICITY 277

# Blackwell Publishers Ltd 1997


